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An example: Number of vowels per language (Maddieson 1984)

n     f(n)
3     0.06
4     0.05
5     0.23
6     0.13
7     0.09
8     0.09
9     0.08
10     0.07
11     0.03
12     0.07
13     0.01
14     0.03
15     0.02
16     0.02
17     0.01
18++     0.04
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f(n) - the frequency of
languages with n vowel
phonemes



How to interpret such a distribution? Is it a linguistically significant
fact?

•   Although the typological method has generated a variety of uneven
distributions like this, we still have no reliable answers (cf. e.g. Rijkhoff & Bakker
1998:265), that is, we are unable to say, for each specific cross-linguistic
distribution, whether (and to which extent) it is determined by linguistic factors (as
opposed to random historical effects).

•   It is widely believed, however, that the linguistic significance of a cross-
linguistic distribution depends on the design of the sample employed to establish
this distribution (e.g. this belief is integrated into the most recent typological
textbook (Whaley 1997:36ff)). Roughly speaking, it is believed that a sample
generates more ‘linguistically accurate’ results if only one language is selected
from each genetic grouping (as opposed to proportional representation of genetic
groupings, or just to random sample). The extreme version of this approach (one
language per each major family) is advocated by Perkins (1989). Two correct
observations are employed to justify this approach:

•  There is an enormous variation in size between genetic groupings, which
has nothing to do with the hypothetical ‘linguistic preferences’.

•  The type of a language is not stochastically independent of its genetic
affiliation.



Outline

• The observations are correct, yet they do not justify the approach (nor the
belief that this approach leads to (more) ‘linguistically accurate’ distributions):

– Although the variation in family size is indeed striking, it has no
significant impact on typological distributions (that is, whether we select
only ‘independent’ languages, or design a proportional sample, the results
would be roughly the same, granted that some basic requirements are
met). This is relatively easy to show, and I’ll start with this issue.

– The dependency of language type on its genetic affiliation reflects its
stochastic dependency on the type of the ancestor language (the proto-
language of the genetic grouping). If this underlying dependency exists,
then it exists independently of the sample design; it does not disappear if
we select only one language per grouping; it just cannot be revealed by
statistical analysis of such a sample. In order to assess the role of such
diachronic dependencies, we have to explore the type-shift (language
change) processes. This is the only way to decide whether or not a given
distribution is linguistically significant, and this is the central part of my
talk.



Properties of the sample and the birth-and-death process

The sample in (Maddieson 1984) is designed in such a way as to include one
language per ‘small’ genetic grouping, with “an intention to include no pair of
languages which had not developed in their own independent speech
communities for at least some 1000-1500 years, but to include one language
from within each group of languages that shared a closer history than that”
(ibid.:158-159). The result can be also considered a good proportional sample
(the correlation between the representation of a group in the sample and its
size according to Ethnologue is ca. 0.7).

The implications of this design are easy to see if we consider the following
scheme of the history of the language population, which includes, apart from
the current state of affairs (the distribution of linguistic traits among the
existing languages), the ‘start state’ (be it the properties of the (single) Proto-
language or of several ‘independent’ proto-languages), and two types of
processes: the processes of language change (type shifts) in the history of each
language and the ‘birth-and-death’ process in the population. An important
point that there is nothing else that might have modified any given typological
distribution.



The history of a typological distribution

time

Birth-and-death
process

Language change

Start
state

Current
state

~8000 ~1500

The underlying idea of ‘quota’ sampling is to eliminate the effects of language
break-ups (“birth” events) that happened after some moment t; in the extreme
version, t corresponds to the time depth of the major families (~8000 on the
Figure). Black circles indicate those birth events that would not affect a
distribution attested in a Perkins-style sample, but have affected the
distribution in Maddieson’s sample. My first claim is that this difference has
virtually no impact on the resulting distribution.



Birth-and-death process in a large population
The mathematical analysis of the birth-and-death process is not a difficult task (in
the introductory courses on probability and statistics, it most commonly figures as
an exercise). It results in the following rule of thumb for potential impact of the
birth-and-death process on a frequency of language type (see Maslova 2000 for
mathematical details):

With a probability more than 0.95, the deviation d(t) of a typological
frequency induced by the birth-and-death process during the last t years
satisfies the following inequality:

d t
N t

( )
( )

< 1

where N(t) is the estimated number of genetic groupings of time depth t, that is if 
N(t) is large, d(t) is very small. Furthermore, this maximum deviation can only be 
achieved for frequencies close to 0.50, since the formula above conceals a dependency
of d(t) on the frequency itself: d(t) ~ f(1-f), which means that d(t) achieves the maximum 
for f = 0.5. I will not go into  mathematical details here; instead, I will show that the main 
prediction works for the test example. More specifically, I will show that if the sample 
were constructed as suggested by Perkins (that is, one language per family), the result 
would be roughly the same as for the essentially proportional sample under consideration.



The impact of the birth process for (~(-8000, -1500-1000))
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The red series with circles as data points is based on three different random sub-
samples which include only language per family (according to Ethnologue). Thus, it
serves as an estimate for the distribution that might have been observed if there had
been no language splits within the given period of time. The blue series with squares
shows the overall distribution in the sample. The maximum deviation is achieved
for n = 8 and equals 0.03. According to the χ2-test, each of the three sub-samples
can be taken to display the same distribution as the sample as a whole.



Interim results

Thus, the overall impact of the language splits that occurred within the period
of ca. 8000-1000 years ago on this particular typological distribution is shown
to be negligible, exactly as predicted by the estimates based on general
properties of the birth-and-death process. The same is most likely to be the
case for the splits that occurred during the last 1000-1500 years (since there
are even more genetic groupings of this time depth), which means that if the
sample were just random, the attested distribution would be roughly the same.

Based on these estimates, we can, for the time being, just forget about
the ‘historical accidents’ (birth-and-death process) that have occurred during
the time span when the population has been large. Now let x be the (unknown)
time moment when this historical period began. Although we do not know the
exact value of x, it is apparently less than the time depth of the major families
(Dryer 2000, Bill Croft, p.c.). It must be borne in mind, however, that before x
(that is, when (if) the language population had been small), the effects of the
birth-and-death process could be truly significant, e.g. it could easily induce a
strong cross-linguistic ‘preference’ (Maslova 2000).  With this in mind, the
scheme for ‘the history of a typological distribution’ can be revised:



The history of a typological distribution revised

time

Birth-and-death process

Language change

Start
state

Current
state

~8000 ~1500x

New Start

Before the ‘new start’, the effects of the birth-and-death process are too strong to
license any significant impact of language change on the overall distribution,
afterwards, the reverse is the case. The initial distribution (‘new start’) can be
considered entirely “accidental”.

Now it is clear (if it was not before) that whenever we consider a typological
distribution as a “linguistic fact”, we implicitly assume that it is determined by
the corresponding type-shift process (= language change), that is, that it would
be roughly the same for other initial distributions. This assumption is present
(if not explicated) even if the linguistic explanation of a distribution is
synchronic in essence.



An example: a possible type-shift process

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18++
3 0.64 0.06 0.17 0.05 0.02 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00
4 0.04 0.52 0.17 0.06 0.06 0.05 0.05 0.00 0.02 0.00 0.00 0.00 0.02 0.00 0.00 0.00
5 0.03 0.02 0.67 0.07 0.03 0.03 0.05 0.04 0.01 0.01 0.01 0.00 0.00 0.02 0.01 0.00
6 0.02 0.02 0.23 0.47 0.06 0.04 0.03 0.03 0.02 0.03 0.01 0.01 0.00 0.01 0.01 0.01
7 0.01 0.01 0.17 0.15 0.38 0.01 0.04 0.04 0.01 0.02 0.03 0.02 0.03 0.02 0.00 0.03
8 0.01 0.07 0.04 0.05 0.02 0.52 0.10 0.03 0.01 0.07 0.00 0.01 0.04 0.01 0.00 0.02
9 0.00 0.01 0.08 0.08 0.10 0.07 0.39 0.07 0.02 0.05 0.04 0.01 0.03 0.00 0.00 0.03
10 0.01 0.01 0.18 0.05 0.07 0.06 0.09 0.34 0.05 0.09 0.00 0.04 0.00 0.00 0.00 0.02
11 0.00 0.03 0.10 0.13 0.01 0.03 0.04 0.22 0.31 0.00 0.00 0.06 0.00 0.01 0.06 0.00
12 0.04 0.01 0.05 0.06 0.03 0.11 0.04 0.12 0.01 0.42 0.00 0.03 0.04 0.01 0.00 0.04
13 0.00 0.00 0.05 0.05 0.16 0.01 0.21 0.02 0.01 0.00 0.31 0.14 0.00 0.00 0.02 0.00
14 0.01 0.00 0.03 0.10 0.06 0.01 0.03 0.09 0.05 0.05 0.06 0.30 0.03 0.08 0.02 0.08
15 0.02 0.03 0.03 0.01 0.11 0.06 0.12 0.00 0.00 0.17 0.00 0.07 0.31 0.05 0.00 0.02
16 0.02 0.00 0.26 0.03 0.07 0.03 0.00 0.01 0.01 0.01 0.00 0.07 0.03 0.33 0.01 0.12
17 0.00 0.00 0.05 0.21 0.01 0.00 0.00 0.00 0.14 0.00 0.03 0.04 0.00 0.01 0.36 0.13
18++ 0.00 0.00 0.01 0.02 0.10 0.02 0.04 0.05 0.01 0.10 0.00 0.06 0.02 0.06 0.04 0.47

Each row corresponds to a possible source state, and and each column, to a
possible target state of the transition process. A cell shows the probability of a
transition from the given source state to the given target state within a certain
period of time (e.g. 1000 years). The diagonal cells show the probability to
retain the given type (within the same period), cf. Greenberg’s “stability”
parameter.



The steady-state distribution and linguistic significance

If the type-shift process for the typology under consideration is adequately
described by this transition matrix, then it is bound to bring about a typological
distribution very close to the attested one, independently of the initial
distribution. In other words, the attested distribution is close to the stationary
(or steady-state) distribution determined by this transition process.

Any claim of linguistic significance of a cross-linguistic distribution (or, for
that matter, any linguistic interpretation of this distribution) implies that the
language population achieved the steady-state distribution for the given
typology (or at least came close to this distribution).

The other way round, in order to decide whether a distribution is linguistically
significant, we must be able to test whether it approximates the steady-state
distribution of the underlying type-shift process. Apart from one special case to be
described shortly, such a test will necessarily involve some estimates for transition
probabilities. Note that if we are able to assess these probabilities, this will give a lot
of additional information for linguistic explanations and inferences.



An example: “Stability” as an explanatory factor
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Apart from the mode (5), the curve for synchronic frequency shows several points of 
non-monotone behavior (3, 8, 12). As shown by the right-hand curve, these points 
correspond to the peaks of ‘stability’ (~ the probability to retain the same number of 
vowels). 



Is this distribution stationary?
In principle, there are two ways to decide whether an attested distribution is close

to the steady-state distribution of the type-shift process:
• One possibility is that the time period of a few thousand years (say, 8000 or

10000), which separates the current language population from the earlier
population that included ancestors of the major families (below, A-
population), can be shown to be sufficiently long for the type-shift processes to
bring about the steady-state distribution for T. This hypothesis can be verified
(or falsified) without invoking the transition matrix directly (unfortunately, we
have no evidence to test this hypothesis (directly) for a longer time span).

• If this time period is not sufficiently long (i.e. a dependency on the properties
of the A-population is retained by the current population), then a test for
stationary distribution must be based on some hypotheses on transition
probabilities. The major challenge is to derive plausible hypotheses of this sort
on the basis of typological data.

I will start with exploring the first option, in order to show that a transition-based
test for stationary distribution is an inescapable task. This will mean that we
cannot assume that the ‘recent’ history (~10000 years) has been enough to
achieve steady-state distributions of typological parameters, and we can only
hope that the real history of the language population has been longer than that.



• There is a straightforward way to verify the first hypothesis. If the time period
separating the existing language population from the A-population is sufficient
to achieve the steady-state distribution for T, this means, by definition of the
steady-state distribution, that the current state of a language (with respect to T)
is stochastically independent from the state of its ancestor in the A-population.
This entails that, for any subset R of the A-population, the current distribution
for T among its descendants must be roughly the same as the overall
distribution. Indeed, by choosing a subset R of the A-population, we choose
certain initial states. If the current type of a language is indeed independent of
its initial state, then the distribution must be the same for all initial states,
hence, for any R. Now let P(R) be the distribution displayed by the
descendants of R. If we find two subsets (R1 and R2) such that P(R1)
significantly differs from P(R2), then hypothesis is falsified, that is, the
relevant time period is not sufficiently long to ensure that the steady-state
distribution is achieved by the population. Note that a single pair of subsets
with this property will be enough to falsify the hypothesis. It was not a
difficult task to split the genetic groupings represented in the sample into such
subsets. The resulting distributions P(R1) and P(R2) look as shown by the
following chart.



P(R1) and P(R2)
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• The curves are so obviously different that it seems superfluous to apply any
statistical tests. However, the value of χ2 is 118.3 (the maximum acceptable
value for 15 degrees of freedom is 37.7), which means that the hypothesis of
independence of the current type from the initial type is rejected.



Two subsets of major families

Afro-Asiatic Mayan 
Araucanian Muskogean
Arawakan Panoan 
Australian Penutian 
Austronesian Quechuan 
Aymaran Sino-Tibetan 
Barbacoan South Caucasian
Basque Tacanan
Carib Tarascan
Chimakuan Totonacan
Chukotko-Kamchatkan Trans-New Guinea 
East Papuan Uto-Aztecan 
Eskimo-Aleut Witotoan 
Gulf Yenisei Ostyak
Hokan Yukaghir
Japanese Yuki
Mataco-Guaicuru 

Algic Macro-Ge
Altaic Mixe-Zoque 
Andamanese Na-Dene 
Austro-Asiatic Nambiquaran
Caddoan Niger-Congo 
Chibchan Nilo-Saharan 
Coahuiltecan North Caucasian 
Dravidian Oto-Manguean 
Guahiban Paezan
Indo-European Siouan
Iroquoian Tai-Kadai 
Jivaroan Tucanoan 
Keres Tupi
Khoisan Uralic 
Kiowa Tanoan Zaparoan 

R1-families (ancestors) [‘blue
distribution’ (triangles)]

R2-families (ancestors) [‘red
distribution’ (squares)]

NB: what I have just demonstrated is the well-known stochastic dependency of the
language type on its genetic affiliation. Note that the dependency is demonstrated by
comparing two samples of isolated (“independent”) languages, i.e. it cannot be
surmounted by any sampling procedure.



Reconstruction of transition probabilities and tests for
stationary distribution

Thus, we have to turn to the second option, that is, we need some reconstructions
of transition matrices, even if only to test the hypothesis of linguistic
significance of a synchronic distribution.

Generally, it is theoretically impossible to infer transition probabilities from a
synchronic distribution (hence, to decide whether this distribution is the
stationary one) without some addition information on the transition process
itself. Yet we do have some additional information, namely, the information
on the genetic relationships between languages. More specifically, for any
group of related languages, we know that they have originated from the same
type-state (although, in the general case, not what this original type-state was).
My basic idea was to find a way to generate hypotheses on transition
probabilities on the basis of this additional information. In other words, the
question is, whether we can infer any information on transition probabilities
from synchronic typological data, in particular, whether it is possible to test
the hypothesis of stationary distribution.

The answer is that, in principle, this is a soluble problem. Furthermore, I will
claim that the attested distribution of the number of vowels per language is
close to the steady-state distribution determined by the corresponding type-
shift process.



Reconstructing transition matrices: random search
As far as I was able to figure out, this type of problem is not solved by the
mathematical statistics (probably not because it is so difficult, but just because
the statistics solves problems posed by other disciplines). The challenge was
essentially mathematical, and it is only to a limited extent that I was able to meet
this challenge (so far). At the present time, I have two algorithms that
“reconstruct” transition processes on the basis of the synchronic typological data
and the corresponding sub-tree of the genetic classification and calculate the
stationary distributions. The Ethnologue is used as the model of genetic
classification (despite its limited applicability for this task).

The first algorithm is essentially a random search for most probable
transition matrices, based on the whole genetic (sub)-tree. The transition matrix
shown before is generated by this algorithm. The main drawback of this
algorithm is that I cannot offer any precise estimate of its robustness (it generates
some ‘answers’ even for those cells of the transition matrix where evidence is not
sufficient to make it reliable.) Some of the answers, however, do represent
plausible (and testable!) hypotheses. Furthermore, this algorithm consistently
confirms that the attested distribution is close to the steady-state distribution of
the underlying type-shift process, i.e. any process generated by the algorithm (ca.
10000 trials) has a steady-state distribution close to the attested distribution.



Two-types test for stationary distribution
The major advantage of the second algorithm is that its results license an exact

mathematical interpretation: it is more like a usual parametric statistical test,
whereby the transition probabilities are taken to be unknown parameters. Its
basic idea is to look not only at the frequencies of single languages of each
type (as is usual), but also at the frequencies of type sets attested in the groups
of (most) closely related languages (the only thing that is assumed is that
genetically related languages originate from the same type, no assumptions on
what this type was). The only version of this algorithm that could be tested on
the basis of this sample makes use of derived samples of pairs and triples of
related languages and works only for two-way typologies:

L1

L2

?

Three types of pairs:
AA, BB, AB

L1

L2

?

L3
?

?

Six types of triples:

(AA)A, (AA)B,

(BB)A, BB(B),

(AB)A, (AB)B



Interpretation and limitations

Although the algorithm can be applied only to two-way typologies, it can serve as
a test for stationary distribution for the entire typology: since the parameter is
quantitative, we can easily “scan” the typology, that is, apply the algorithm to
all possible type boundaries. This procedure confirms that the distribution is
close to the stationary one.

Unfortunately, the estimates for transition probabilities obtained by means of this
procedure are of limited linguistic significance: for each n, we know the
probability for a language that has n or less vowels to shift towards a state with
more than n vowels, and vice versa. The linguistic interpretation of such data
is hindered by the fact that many very different shifts are ‘merged’ together
(cf. these data with the ‘complete’ transition matrix generated by the first
algorithm). In other words, we have reliable information on the probabilities to
cross various ‘boundaries’ (in a given direction), but not on the actual source
states and target states of languages crossing the boundary. However, some
interesting observations appear to emerge even on the basis of this limited
information.



n

3 0.06 0.01 0.15 7.90 5%
4 0.10 0.02 0.19 9.99 5%
5 0.33 0.16 0.34 5.46 5%
6 0.46 0.18 0.22 3.26 5%
7 0.54 0.15 0.13 3.29 5%
8 0.63 0.18 0.11 8.47 5%
9 0.71 0.21 0.09 15.28 0.1%

10 0.77 0.28 0.08 16.48 0.1%
11 0.80 0.33 0.08 13.14 1%
12 0.87 0.30 0.05 17.33 0.1%
13 0.88 0.35 0.05 19.12 0.1%
14 0.91 0.35 0.04 17.50 0.1%
15 0.92 0.27 0.02 14.27 1%

This table shows the results of the two-types
test for stationary distribution for various
boundaries between types (n). For each n, p1 is
the hypothetical steady-state probability for a
language to have n or less vowels, p12 and p21
are the transition probabilities estimated on the
basis of the sample of pairs of most closely
related languages: p21 is the probability for a
language that has more than n vowels to have or
less vowels after ~1000-1500 years, p12 - the
probability of the reverse transition. The last
two columns give the results of χ2 test based on
the sample of “triples”. It can be easily seen that
the triples are distributed as predicted by the
hypothesis of stationary distribution (that is, the
test does not reject this hypothesis).

p1 p21 p12 χ2 for triples

The results of the two-types test for various type boundaries



‘Traffic’ through various boundaries
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One interesting fact is that the
probability for a language of the
‘small’ type to shift towards the
‘large’ type does not decrease
monotonically as the boundary
shifts to the right (i.e. from
frequent ‘large’ types to rare
‘large types), but has a clear
mode at the boundary between 5
and 6-vowel systems, which
means that the 5-vowel systems
are most likely to be ‘enhanced’
by additional vowels. An
implication is that the mode of
the steady-state distribution is
ensured not only by the stability
of this system, but also by a
strong drift in the opposite
direction.

Blue series - crossing from ‘small’ to ‘large’

Red (dashed) series - crossing from ‘large’ to ‘small’



According to Comrie, the typological method assumes that “at least within time
span of several thousand years in either direction from the present, there has been
no significant sense in which human language has evolved, i.e. no sense in which
human language as a whole today is different in essence from that of ten thousand
years ago” (1989:9). An assumption of this sort is in fact also associated with the
(unknown) temporal point referred to as “new start” in the scheme above (S.12): x
can be viewed as the start of the population’s drift toward the steady-state
distribution only if the transition probabilities have remained the same since this
moment of time. Now what the test example has shown is this:
   (a) ten thousand years is not enough to achieve the steady-state distribution,
   but (b) the language population has achieved this distribution.
The historical implication of this result is quite trivial: at least as far as phonology
is concerned, the same ‘level of evolution’ can be assumed for a significantly
greater time span than ten thousand years from the present. In this sense, the result
has more far-reaching linguistic implications than just demonstration of linguistic
significance of one specific cross-linguistic distribution: if the population has had
enough time to achieve at least one steady-state distribution, it is (more) likely
that it has achieved such distributions for other typological parameters as well.

Historical interpretation and its linguistic implications



Implications for typological sampling

• The reason why the cross-linguistic data which served as a test example
license testing the hypothesis of stationary distribution and some (albeit
limited) inferences on transition probabilities is that the sample does include a
relatively large number of groups of (relatively) closely related languages,
which made it possible to derive reasonably large sub-samples of “pairs” and
“triples”, something that a Perkins-like sample would not allow ‘by
definition’.

• The limitations on linguistically interesting inferences on transition
probabilities are partly determined by the fact that the most closely related
languages in the sample are too distant, i.e. the time period for which the
transition probabilities (1000 - 1500 years) can be calculated is longer than
desirable for an accurate exploration of the transition process: as can be
inferred from this sample, a vowel system can easily undergo more than one
modification within this period. Otherwise, the inferences on transition
probabilities could be extended (at least) to three- or four-way typologies.

• Whether we want just to test if a distribution is linguistically motivated, or also
to explore the diachronic implications of cross-linguistic data, we need to
sample groups (at least ‘pairs’ and ‘triples’) of closely related languages (or
even dialects), not (or not only) ‘independent’ languages.
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