
A case for implicational universals 
A response to Michael Cysouw 

Elena Maslova 
 
 
In his paper “Against implicational universals”, Michael Cysouw argues that the class of 
typological phenomena referred to as implicational universals cannot be established by 
analysis of statistical data. On the one hand, the canonical defining feature of 
implicational universal A → B, that is, exactly one empty (or nearly empty) cell [+A,–B] 
in the tetrachoric table that cross-classifies a representative sample S according to 
parameters A and B, is not a reliable criterion for ANY type of interaction between 
parameters, since it does not guarantee that the parameters involved are not independent 
in the first place.1 On the other hand, if the hypothesis of independence is rejected by a 
reliable statistical test, that is, the number of languages in the cell [+A,–B] is not only 
close to zero, but also LESS THAN EXPECTED under the hypothesis of independence, then 
the number of languages in the “diagonal” cell [–A,+B] is also less than expected; in this 
simple sense, any statistical dependency is bidirectional. It follows, according to Cysouw, 
that, statistically, “there is no justification for an asymmetric dependency between the 
parameters in an implicational universal”. The goal of this response is to show that this is 
not the case, that is, a dependency between linguistic parameters can be asymmetric in an 
explicitly definable and statistically testable sense that can be viewed as a formalization 
of the original concept of a Greenbergian implicational universal.  
 The tetrachoric table that cross-classifies languages from a sample S according to 
two categorical parameters of linguistic variation (A and B) is intended to test 
linguistically interesting hypotheses about the (joint) distribution P(A,B) represented by 
this sample. One such hypothesis is the hypothesis of independence, which states that the 
probability of any combination of values of A and B is just the product of the 
probabilities of these values taken in isolation (see Note 1), i.e., there is no interaction 
between A and B. Statistical tests for independence, like Fisher Exact or the more widely 
known χ2, can be used to reject this hypothesis.2 It seems worth noting that if such a test 
is applied to a given sample S and fails to reject the hypothesis of independence, this does 
not entail that the parameters are independent: it can also be the case that the sample is 
too small to reveal the dependency.4 In any event, if the hypothesis of independence 
cannot be rejected on the basis of sample S, then this sample can hardly reveal anything 
about HOW the parameters interact (even if such an interaction actually takes place). If, 
however, this hypothesis is rejected, then we can try to ask further questions about the 
detected dependency, that is, to test more specific hypotheses about the interaction 
between parameters A and B.  
 The concept of implicational universal can be constructed as a hypothesis about 
the type of dependency between A and B, which, since Greenberg’s seminal paper 
(1963), is widely considered as particularly linguistically interesting. In the canonical 
case, a tetrachoric table reveals an implicational universal if one of its cells is empty and 
the numbers in the other three cells are large enough to reject the hypothesis of 
independence. This situation is opposed to the canonical case of “logical equivalence”, 
where two diagonal cells are empty, so that all languages are distributed between the 
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other two cells. This difference reveals a significant distinction between two types of 
interaction between parameters of linguistic variation:  
 
1. In the case of implication, one value of A constrains the variation along the other 

parameter, whereas the other does not. In other words, the hypothesis of the 
ABSOLUTE implicational universal A → B states that the CONDITIONAL probability of 
B for A languages P(+B|+A) is equal to 1, whereas the distribution of B among non-
A languages is even, that is, the conditional probability of B for non-A languages 
P(+B|–A) is close to 0.5. 

2. In the case of (absolute) logical equivalence, both values of one parameter constrain 
the variation along the other parameter, so that A ↔ B means that P(+B|+A) = 1 and 
P(+B|–A) = 0.     

 
The challenge is to extend these notions to the case of statistical (distributional) 
universals, that is, to “relax” the requirement that one or two conditional probabilities 
must be equal to 1 in such a way as to save the linguistically significant distinction 
between implicational and bidirectional dependencies. In my view, a natural and useful 
extension of the notion of implicational universal can be obtained if the requirements that 
P(+B|+A) is equal to 1 and P(+B|–A) is close to 0.5 are replaced by the single 
requirement that the distribution of B among A languages is MORE STRONGLY SKEWED 
than its distribution among non-A languages, where the “strength” of skewing can be 
measured simply as deviation of P(+B|+A) from 0.5. This extension retains the basic 
semantics of the original notion: +A constraint the value of B stronger than –A; in other 
words, if we know that a language is +A, it gives us more information about the value of 
B than the knowledge that a language is –A.4  

Let us say that one value of A is MARKED with respect to B if it imposes stronger 
constraints on B than the other value; this concept of (relative) markedness can be 
expressed mathematically as in the following definition: 
  
Definition 1. One value of a binary parameter A is marked with respect to another binary 

parameter B if one of the following conditions is met: 
 

(i) [+A] is marked if |P(+B|+A) – 0.5| > |P(+B|–A) – 0.5| 
(ii) [–A] is marked if |P(+B|+A) – 0.5| < |P(+B|–A) – 0.5| 

 
If  |P(+B|+A) – 0.5| = |P(+B|–A) – 0.5|, then neither value of A is marked. 
 
Then, a dependency between A and B can be said to be SYMMETRIC with respect to A if 
neither value of A is marked with respect to B. This is the “null hypothesis” that has to be 
rejected to establish ANY implicational universal with (a value of) A in the antecedent. 
The null hypothesis is true in two cases: 
 
1. P(+B|+A) = P(+B|–A), or  
2. P(+B|+A) = 1 – P(+B|–A) 
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Figure 1. Change of parameters: from B to B = A.  
 +A –A   +A –A    
+B n11 n01     � B = A  n11 n00 
–B  n01 n00  B ≠ A  n01 n01 
 
Figure 2. A symmetrical dependency  
Table 2a. Original distribution Table 2b. Distribution for A and A = B 
 +A –A   +A –A Total   
+B 12 60 72     � B = A  12 30 42 
–B  40 30 70  B ≠ A  40 60 100 
Total 52 90 142  Total 52 90 142 
Fisher Exact: p < 0.000001   p = 0.253 
 
Figure 3. An implicational dependency  
Table 3a. Original distribution Table 3b. Distribution for A and A = B 
 +A –A   +A –A Total   
+B 40 50 90     � B = A  40 60 100 
–B  6 60 66  B ≠ A  6 50 56 
Total 46 110 156  Total 46 100 156 
Fisher Exact: p < 0.000001   p < 0.00001 
 
The first case is equivalent to the hypothesis of independence (see Note 1), i.e., this case 
can be ruled out by one of the standard statistical tests for independence (e.g., by Fisher 
Exact). The second equation defines the case of genuine symmetry: assuming that the 
notion of “positive” value (+) can be given the same linguistic sense for both parameters 
(for example, “head-final” for OV and GenN), this equation means that the probability 
that both parameters HAVE THE SAME VALUE does not depend on the value of A. This 
hypothesis can be falsified by means of the same test for independence applied to a 
slightly modified tetrachoric table; namely, the parameter B  must be replaced with a new 
parameter, B = A, as shown in Figure 1. The hypothesis of symmetry is rejected if the 
hypothesis of independence is rejected for the new pair of parameters, A and B = A. An 
example of symmetrical dependency is given in Figure 2: Fisher Exact rejects the 
hypothesis of independence for the original tetrachoric table (Table 2a) but not for the 
new parameters, A and  B = A (Table 2b). Figure 3 illustrates an asymmetric distribution: 
the hypothesis of independence is rejected for both pairs of parameters, more specifically, 
the positive value of A is shown to be marked with respect to B.   

Now a specific hypothesis of implicational universal can be formulated as follows: 
 
Definition 2. A joint distribution of linguistic parameters A and B counts as an 

IMPLICATIONAL UNIVERSAL A → B if the following conditions are simultaneously 
met: 

 
(i) [+A] is marked with respect to B. 
(ii) P(+B|+A) > 0.5 
(iii) [+B] is not marked with respect to A.  
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Figure 4. A weak implicational dependency  
Table 4a. Original distribution  Table 4b. Distribution for A and A = B 
 +A –A   +A –A Total   
+B 90 35 125     � B = A  90 28 118 
–B  10 28 38  B ≠ A  10 35 45 
Total 100 63 163  Total 100 53 163 
Fisher Exact: p < 0.00001   p < 0.0000001 
 
Table 4c. Distribution for B and B = A 
 +B –B    
A = B 90 28 118      
A ≠ B  35 10 45  
Total 125 38 163  
Fisher Exact: p = 1 
 
 
The first condition ensures the P(B|+A) is more strongly skewed than P(B|–A); the 
second simply establishes the direction of skewing, that is, it distinguishes A → (+)B 
from A → –B. And finally, condition (iii) rules out the reverse implication B → A; note 
that this condition is met in the example distribution of Figure 3, since the distribution of 
A among B languages is less skewed than the distribution of A among non-B languages. 
If only conditions (i)-(ii) are met, the distribution of A and B is the statistical counterpart 
of EQUIVALENCE (A ↔ B).   
 It seems to me that Definitions 1 and 2 describe a natural extension of the concept 
of (absolute) implicational universal to the case of distributional universals. On the other 
hand, conditions (i)-(ii), hence, the hypothesis of implicational universal as a whole, can 
be easily tested against statistical data: if the data are sufficient to reject the “null” 
hypotheses of independence and harmony, this very fact guarantees that the values in our 
tetrachoric table are significantly different, so that the marked value of A (condition (i)) 
and the direction of skewing (condition (ii)) can be established in a statistically justified 
fashion (see example distributions of Figures 2-4). More specifically, the implicational 
universal A → B can be established if the number of languages in the cell [+A,–B] is 
much smaller than in the cell [+A,+B] and this difference (divided by the total number of 
A languages), is significantly greater than the difference between the two other cells 
(divided by the total number of non-A languages). In effect, this is just a more precise 
and explicit description of the criterion of “exactly one nearly empty cell”.  
 There is an important distinction between the concept of absolute implicational 
universal and its extension to the case of statistical universals, which deserves to be 
briefly mentioned here. An absolute implicational universal A → B is always equivalent 
to –B → –A; if P(+B|+A) = 1, then P(–A|–B) = 1.  For a statistical implicational 
universal, this is not the case (which is why the requirement of unidirectionality had to be 
stated separately in Definition 2). More specifically, there are three statistically 
distinguishable types of dependencies that count as implicational universals A → B 
according to Definition 2:  
1. STRONG unidirectional implication: A → B and –B → –A 



5 

2. WEAK unidirectional implication: A → B, but neither value of B is marked with 
respect to A in the sense of Definition 1. 

 
The distribution represented in Figure 3 shows a strong implicational dependency: the 
conditional distribution of A for  the negative value of B is obviously more skewed than 
for the positive value, i.e., –B is marked with respect to A. Figure 4 gives an example of a 
weak implication: the Fisher Exact p-value for the distribution of A and B reveals the 
implication A → B in the sense of Definition 2 (see Tables 4a and 4b). However, neither 
value of B is marked with respect to A: as shown by the Fisher Exact value for Table 4c, 
events B and A = B are independent. This means that the conditional probability 
P(+A|+B) is equal to P(–A|–B), i.e., both conditional distributions are equally skewed in 
favor of A = B. Thus, this dependency is asymmetrical with respect to A, but symmetrical 
with respect to B. 

On the other hand, a (statistical) equivalence A ↔ B is not identical to 
bidirectional symmetrical dependency: the former implies that both [+A] and [+B] are 
marked with respect to each other, and the latter, that neither value of either parameter is 
marked with respect to the other parameter. Thus, the framework proposed here allows 
for a more elaborate classification of dependencies between linguistic parameters than the 
original concept of implicational universal, and all these types of dependencies can be 
distinguished by analysis of statistical data. A further discussion of this classification is 
beyond the scope of this paper. 

To conclude, the inadequacy of the criterion of “exactly one nearly empty cell” 
(without further qualifications), correctly detected by Cysouw, does not entail that the 
concept of implicational universal is statistically unwarranted, only that this concept must 
be explicated in a more mathematically precise way; once such an explication is in place, 
it is not a problem to develop an appropriate statistical test. It must be stressed that the 
definition of statistical implicational universal proposed here is not the only possible one; 
for example, one may want to confine the notion of implicational universal to “strong” 
implicational universals. My main goal in this paper has been to demonstrate that such a 
definition is possible in principle, i.e., the concept of implicational universal CAN be 
extended to the case of statistical universals and supplied with adequate statistical criteria. 
 
Notes 
1. In this paper, I use the canonical concept of independent events: events A and B are 

INDEPENDENT if the probability p(A,B) of A and B occurring together is equal to the 
product of probabilities p(A) and p(B). This is equivalent to saying that the 
conditional probability p(A|B) of A under the condition that B occurs is equal to the 
conditional probability p(A|–B), hence, to the unconditional probability p(A). In the 
present context, A and B are values of binary linguistic parameters, so such 
parameters are independent if and only if A and B are independent. The notion of 
INDEPENDENT LANGUAGES, as commonly used in the typological literature, is only 
remotely related to this concept; it is not invoked in the present paper. A dependency 
between linguistic parameters, in the sense defined above, can be established only 
with regard to a given population W of languages (which can be the total set of 
modern languages, languages of one geographical area, a population containing a 
single language from each genetic group of a given time depth, etc.). It is clear that 
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the plausibility of possible INTERPRETATIONS of such dependencies depends on the 
properties of W; this problem is not discussed in the present paper (see, however, 
Note 2). 

2.  Contrary to Dryer’s claim (1989, 2003), the existence of genetic and areal relations 
between languages does not make standard statistical tests for independence 
inapplicable or useless in typological studies. The conditions on applicability of such 
tests are formulated in terms of SAMPLING procedure, not in terms of properties of the 
population W from which the sample is drawn (roughly speaking, the fact that one 
language from W is present in the sample must not change the probability of selection 
of any other language). Of course, such a test does not guarantee that its output is 
determined by universal constraints on language variation, it just helps to examine the 
properties of W (in particular, of the population of world’s languages). Further 
explanatory hypotheses can, in their turn, be testable by statistical methods (for 
example, by comparing different subsets W of existing languages, as in Dryer’s 
(1989) method).  

Fisher Exact is likely to be the best choice for samples that appear to reveal an 
implicational universal, since χ2 is not reliable if some cells are nearly empty. 
Cysouw writes, somewhat misleadingly, that the value given by this test “expresses 
how likely it is for the distribution to be a result of pure chance”; this interpretation is 
based on the unwarranted implicit assumption that the distributions of A and B taken 
in isolation also reflect “pure chance”, which is particularly controversial if A and/or 
B are strongly skewed.   

3. This can be the case in the example of “apparent implicational universal” discussed by 
Cysouw (his Figure 2), that is, Cysouw’s data do not demonstrate that there is no 
dependency since the sample is very small. Notably, if the sample for analysis of the 
second distribution (Cysouw’s Figure 3), where a correlation is shown to exist, had 
been as small is that of Figure 2, Fisher Exact test would have been unable to reject 
the hypothesis of independence.  

4. This formulation can be given a precise mathematical sense if the entropy E(B) of B 
(the amount of unknown information about the value of B) is calculated according to 
the usual formula from the information theory: 

  
E(B) = P(+B)log2(1/P(+B)) + P(–B)log2(1/P(–B))  

 
The value of E(B) ranges from 1 (if P(+B) = 0.5) to 0 (if P(+B) = 1 or P(+B) = 0).  
Thus, if P(B|+A) deviates from 0.5 more than P(B|–A), then E(B|+A) is less than 
E(B|–A).  
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